On Interval Valued Intuitionistic (α , β)-Fuzzy H_v-Subgroups

Arvind Kumar Sinha, Manoj Kumar Dewangan^{*} Department of Mathematics NIT Raipur, Chhattisgarh, INDIA aksinha.maths@nitrr.ac.in, *manoj_rpr76@yahoo.co.in

Abstract The notion of intuitionistic fuzzy sets is a generalization of the notion of fuzzy sets which is introduced by Atanassov. In this paper we give the concept of an interval valued intuitionistic (α, β) -fuzzy H_v-subgroups of an H_v-groups by using the notion of "belongingness (\in)" and "quasi-coincidence (q)" of fuzzy points with fuzzy sets, where $\alpha \in \{\in, q\}$, $\beta \in \{\in, q, \in \lor q, \in \land q\}$ and, then we give related properties of these notions.

Mathematics Subject Classification: 20N20

Keywords: H_{ν} -group, H_{ν} -subgroup, fuzzy H_{ν} -group, fuzzy H_{ν} -subgroup, interval valued intuitionistic (α, β) -fuzzy H_{ν} -subgroup.

1. INTRODUCTION

Marty [1] introduced the concept of hyperstructures in 1934. Hyperstructures have many applications to several branches of pure and applied sciences. Vougiouklis [2] introduced the notion of H_{ν} -structures, and Davvaz [3] surveyed the theory of H_{ν} -structures. After the introduction of fuzzy sets by Zadeh [4], there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov [5] is one among them. For more details on intuitionistic fuzzy sets, we refer the reader to [6, 7].

The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [14], played a vital role to generate some different types of fuzzy subgroups. Bhakat and Das [8, 9] gave the concepts of (lpha,eta)-fuzzy subgroups by using the notion of "belongingness (\in) " and "quasi-coincidence (q)" between a fuzzy point and a fuzzy subgroup, where α , β are any two of $\{ \in ,q, \in \lor q, \in \land q \}$ with $\alpha \neq \beta$ $\in \land q$, and introduced the concept of an ($\in , \in \lor q$)fuzzy subgroup. Yuan, Li et al. [10] redefined (α, β) -intuitionistic fuzzy subgroups. M. Asghari-Larimi [15] gave intuitionistic (α , β)-fuzzy H_vsubmodules. Then Sinha and Dewangan [16] has given the concept of intuitionistic (α , β)-fuzzy H_vsubgroups. Now this paper continues this line of research for interval valued intuitionistic (α , β)-fuzzy H_{ν} -subgroups of H_{ν} -groups.

The whole paper is arranged in following style. Some fundamental definitions on H_{ν} -structures and fuzzy sets are explored in section 2. We define interval

valued intuitionistic (α, β) -fuzzy H_v-subgroups and establish some useful theorems in section 3.

2. BASIC DEFINITIONS

In order to prove further results we are giving some basic definitions.

Definition 2.1 [11] Let X be a non-empty set. A mapping $\mu: X \to [0, 1]$ is called a fuzzy set in X.

Definition 2.2 [11] An intuitionistic fuzzy set A in a non-empty set X is an object having the form $A = \{ (x, \mu_A(x), \lambda_A(x)) : x \in X \},\$ where the functions $\mu_A: X \to [0,1]$ and $\lambda_A: X \to [0,1]$ denote the degree of membership and degree of non membership of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \lambda_A(x) \le 1$ for all $x \in X$. We shall use the symbol $A = \{\mu_A, \lambda_A\}$ for the intuitionistic fuzzy set $A = \{ (x, \mu_A(x), \lambda_A(x)) \colon x \in X \}.$

Definition 2.3 [12] Let G be a non-empty set and $*: G \times G \rightarrow \mathcal{O}^*(G)$ be a hyperoperation, where

 $\mathscr{O}^*(G)$ is the set of all the non-empty subsets of G. Where $A * B = \bigcup_{a \in A, b \in B} a * b, \forall A, B \subseteq G$.

The * is called weak commutative if $x * y \cap y * x \neq \phi$, $\forall x, y \in G$. The * is called weak associative if $(x * y) * z \cap x * (y * z) \neq \phi$, $\forall x, y, z \in G$.

A hyperstructure (G, *) is called an H_{ν} -group if (i) * is weak associative. (ii) a * G = G * a = G, $\forall a \in G$ (Reproduction axiom).

Definition 2.4 [13] Let G be a hypergroup (or H_{ν} group) and let μ be a fuzzy subset of G. Then μ is said to be a fuzzy subhypergroup (or fuzzy H_{ν} subgroup) of G if the following axioms hold:

$$(i)\min\{\mu(x),\mu(y)\} \le \inf_{\alpha \in x^* y} \{\mu(\alpha)\}, \forall x, y \in G$$

(*ii*) For all $x, a \in G$ there exists $y \in G$ such that $x \in a * y$ and $\min\{\mu(a), \mu(x)\} \leq \{\mu(y)\}$.

Definition 2.5 [5] Let $A = \{\mu_A, \lambda_A\}$ and $B = \{\mu_B, \lambda_B\}$ be intuitionistic fuzzy sets in X. Then (1) $A \subseteq B \Leftrightarrow \mu_A(x) \leq \mu_B(x)$ and $\lambda_A(x) \leq \lambda_B(x)$ $\forall x \in X$, (2) $A^c = \{(x, \lambda_A(x), \mu_A(x)) : x \in X\}$, (3) $A \cap B = \begin{cases} (x, \min\{\mu_A(x), \mu_B(x)\}, \\ \max\{\lambda_A(x), \lambda_B(x)\}) : x \in X \end{cases}$, (4) $A \cup B = \begin{cases} (x, \max\{\mu_A(x), \mu_B(x)\}, \\ \min\{\lambda_A(x), \lambda_B(x)\}) : x \in X \end{cases}$.

Definition 2.6 [8] Let μ be a fuzzy subset of R. If there exist a $t \in (0, 1]$ and an $x \in R$ such that

$$\mu(y) = \begin{cases} t & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

Then μ is called a fuzzy point with support x and value t and is denoted by x_t .

Definition 2.7 [8] Let μ be a fuzzy subset of R and x_t be a fuzzy point.

If $\mu(x) \ge t$, then we say x_t belongs to μ , and write $x_t \in \mu$.

If $\mu(x) + t > 1$, then we say x_t is quasi-coincident with μ , and write $x_t q \mu$.

$$x_t \in \lor q\mu \Leftrightarrow x_t \in \mu \text{ or } x_t q\mu.$$

$$x_t \in \land q\mu \Leftrightarrow x_t \in \mu \text{ and } x_t q\mu.$$

In this paper unless otherwise stated, α and β will denote any one of \in , $q, \in \lor q$ or $\in \land q$ with $\alpha \neq \in \land q$, which was introduced by Bhakat and Das [9].

By taking the notations as taken by [17], an interval number \tilde{a} we mean an interval $\begin{bmatrix} a^-, a^+ \end{bmatrix}$ where $0 \le a^- \le a^+ \le 1$. The set of all interval numbers is denoted by D[0,1]. We also identify the interval [a, a] by the number $a \in [0,1]$.

For the interval numbers

$$\tilde{a}_i = \begin{bmatrix} a_i^-, a_i^+ \end{bmatrix} \in D[0,1], i \in I$$
, we define
 $\max \{\tilde{a}_i, \tilde{b}_i\} = \begin{bmatrix} \max (a_i^-, b_i^-), \max (a_i^+, b_i^+) \end{bmatrix}$,
 $\min \{\tilde{a}_i, \tilde{b}_i\} = \begin{bmatrix} \min (a_i^-, b_i^-), \min (a_i^+, b_i^+) \end{bmatrix}$,
 $\inf \tilde{a}_i = \begin{bmatrix} \bigwedge_{i \in I} a_i^-, \bigwedge_{i \in I} a_i^+ \end{bmatrix}$, $\sup \tilde{a}_i = \begin{bmatrix} \bigvee_{i \in I} a_i^-, \bigvee_{i \in I} a_i^+ \end{bmatrix}$
and put
 $(1) \tilde{a}_1 \leq \tilde{a}_2 \Leftrightarrow a_1^- \leq a_2^-$ and $a_1^+ \leq a_2^+$,
 $(2) \tilde{a}_1 = \tilde{a}_2 \Leftrightarrow a_1^- = a_2^-$ and $a_1^+ = a_2^+$,
 $(3) \tilde{a}_1 < \tilde{a}_2 \Leftrightarrow \tilde{a}_1 \leq \tilde{a}_2$ and $\tilde{a}_1 \neq \tilde{a}_2$,
 $(4) k\tilde{a} = \begin{bmatrix} ka^-, ka^+ \end{bmatrix}$, whenever $0 \leq k \leq 1$.
It is clear that $(D[0,1], \leq, \lor, \land)$ is a

complete lattice with 0 = [0,0] as least element and 1 = [1,1] as greatest element.

By an interval valued fuzzy set F on X we mean the set $F = \left\{ \left(x, \left[\mu_F^-(x), \mu_F^+(x) \right] \right) : x \in X \right\}$. Where μ_F^- and μ_F^+ are fuzzy subsets of X such that $\mu_F^-(x) \le \mu_F^+(x)$ for all $x \in X$. Put $\tilde{\mu}_F(x) = \left[\mu_F^-(x), \mu_F^+(x) \right]$.

Available online at www.ijrat.org

Then $F = \{(x, \tilde{\mu}_F(x)) : x \in X\},\$ Where $\tilde{\mu}_F : X \to D[0, 1].$

If A, B are two interval valued fuzzy subsets of X, then we define $A \subseteq B$ if and only if for all $x \in X$, $\mu_A^-(x) \le \mu_B^-(x)$ and $\mu_A^+(x) \le \mu_B^+(x)$, A = B if and only if for all $x \in X$, $\mu_A^-(x) = \mu_B^-(x)$ and $\mu_A^+(x) = \mu_B^+(x)$.

Also, the union, intersection and complement are defined as follows: let A; B be two interval valued fuzzy subsets of X, then

$$A \cup B = \left\{ \left(x, \left[\max \left\{ \mu_{A}^{-}(x), \mu_{B}^{-}(x) \right\}, \\ \max \left\{ \mu_{A}^{+}(x), \mu_{B}^{+}(x) \right\} \right] \right) : x \in X \right\}, \\ A \cap B = \left\{ \left(x, \left[\min \left\{ \mu_{A}^{-}(x), \mu_{B}^{-}(x) \right\}, \\ \min \left\{ \mu_{A}^{+}(x), \mu_{B}^{+}(x) \right\} \right] \right) : x \in X \right\}, \\ A^{c} = \left\{ \left(x, \left[\left\{ 1 - \mu_{A}^{-}(x), 1 - \mu_{A}^{+}(x) \right\} \right] \right) : x \in X \right\}.$$

According to Atanassov an interval valued intuitionistic fuzzy set on X is defined as an object of the form $A = \{(x, \tilde{\mu}_A(x), \tilde{\lambda}_A(x)) : x \in X\},\$ where $\tilde{\mu}_A(x)$ and $\tilde{\lambda}_A(x)$ are interval valued fuzzy sets on X such that $0 \le \sup \tilde{\mu}_A(x) + \sup \tilde{\lambda}_A(x) \le 1$ for all $x \in X$.

For the sake of simplicity, in the following such interval valued intuitionistic fuzzy sets will be denoted by $A = (\tilde{\mu}_A, \tilde{\lambda}_A)$.

3. INTERVAL VALUED INTUITIONISTIC (α, β) - fuzzy H_v-subgroups

In this section we give the definition of interval valued intuitionistic (α, β) -fuzzy H_v-subgroup and prove some related results.

Definition 3.1 Let *G* be a H_v-group. An intuitionistic fuzzy set $A = \{\mu_A, \lambda_A\}$ of *G* is called intuitionistic fuzzy H_v-subgroup of *G* if the following axioms hold:

(i) $\min\{\mu(x), \mu(y)\} \le \inf_{\alpha \in x^* y} \{\mu(\alpha)\}, \forall x, y \in G.$

(*ii*) For all $x, a \in G$ there exists $y \in G$ such that $x \in a * y$ and $\min\{\mu(a), \mu(x)\} \leq \{\mu(y)\}.$

(*iii*) $\sup_{\alpha \in x^{*y}} \{\lambda_A(\alpha)\} \le \max\{\lambda_A(x), \lambda_A(y)\}, \forall x, y \in G.$ (*iv*) For all $x, a \in G$ there exists $y \in G$ such that

$$x \in a * y$$
 and $\{\lambda_A(y)\} \le \max\{\lambda_A(a), \lambda_A(x)\}.$

Definition 3.2 An interval valued intuitionistic fuzzy set $A = {\tilde{\mu}_A, \tilde{\lambda}_A}$ in *G* is called an interval valued intuitionistic (α, β) -fuzzy H_v -subgroup of *G* if for all $t, r \in (0, 1]$,

(1)
$$\forall x, y \in G, \quad x_t, y_r \alpha \ \tilde{\mu}_A \Longrightarrow z_{t \wedge r} \beta \ \tilde{\mu}_A \text{ for all } z \in x \cdot y,$$

(2)
$$\forall x, a \in G, \quad x_t, a_r \alpha \ \tilde{\mu}_A \Longrightarrow y_{t \wedge r} \beta \ \tilde{\mu}_A \quad \text{for}$$

some $y \in G$ with $x \in a \cdot y$,

(3)
$$\forall x, y \in G, \quad x_i, y_r \overline{\alpha} \ \tilde{\lambda}_A \Rightarrow z_{i \wedge r} \overline{\beta} \ \tilde{\lambda}_A \quad \text{for all} \\ z \in x \cdot y,$$

$$(4) \forall x, a \in G, \quad x_t, a_r \overline{\alpha} \ \tilde{\lambda}_A \Rightarrow y_{t \wedge r} \overline{\beta} \ \tilde{\lambda}_A \qquad \text{for}$$

some $y \in G$ with $x \in a \cdot y$.

Lemma 3.3 Let $A = {\tilde{\mu}_A, \tilde{\lambda}_A}$ be an interval valued intuitionistic fuzzy set in G. Then for all $x \in G$ and $r \in (0, 1]$, we have

$$(1) x_t q \tilde{\mu}_A \Leftrightarrow x_t \bar{\in} \tilde{\mu}_A^c.$$
$$(2) x_t \in \lor q \tilde{\mu}_A \Leftrightarrow x_t \bar{\in} \land q \tilde{\mu}_A^c$$

Proof (1) Let $x \in G$ and $r \in (0, 1]$. Then, we have

$$x_{t}q\tilde{\mu}_{A} \Leftrightarrow \tilde{\mu}_{A}(x) + t > 1$$
$$\Leftrightarrow 1 - \tilde{\mu}_{A}(x) < t$$
$$\Leftrightarrow \tilde{\mu}_{A}^{c}(x) < t$$
$$\Leftrightarrow x_{t} \in \tilde{\mu}_{A}^{c}.$$

(2) Let
$$x \in G$$
 and $r \in (0, 1]$. Then, we have
 $x_t \in \lor q \tilde{\mu}_A \Leftrightarrow x_t \in \tilde{\mu}_A$ or $x_t q \tilde{\mu}_A$
 $\Leftrightarrow \tilde{\mu}_A(x) \ge t$ or $\tilde{\mu}_A(x) + t > 1$
 $\Leftrightarrow 1 - \tilde{\mu}_A^c(x) \ge t$ or $1 - \tilde{\mu}_A^c(x) + t > 1$
 $\Leftrightarrow x_t \overline{q} \tilde{\mu}_A^c$ or $x_t \in \tilde{\mu}_A^c$

$$\Leftrightarrow x_t \overline{\in \wedge q} \tilde{\mu}_A^c.$$

Theorem 3.4 If $A = {\tilde{\mu}_A, \tilde{\lambda}_A}$ is an interval valued intuitionistic (\in, \in) -fuzzy H_v -subgroup of G, then $A = {\tilde{\mu}_A, \tilde{\lambda}_A}$ is an interval valued intuitionistic fuzzy H_v -subgroup of G.

Proof (1) Suppose $x, y \in G$ and $\tilde{\mu}_A(x) \wedge \tilde{\mu}_A(y) = t$. Then $x_t, y_t \in \tilde{\mu}_A$. By condition (1) of definition 3.2, we have $z_t \in \tilde{\mu}_A, \quad \forall z \in x \cdot y$, and so $\tilde{\mu}_A(z) \ge t, \quad \forall z \in x \cdot y$. Consequently $\tilde{\mu}_A(x) \wedge \tilde{\mu}_A(y) = t \le \bigwedge_{z \in x \cdot y} \tilde{\mu}_A(z)$

for all $x, y \in G$.

(2) Now assume $x, a \in G$ and $\tilde{\mu}_A(x) \wedge \tilde{\mu}_A(a) = t$. Then $x_t, a_t \in \tilde{\mu}_A$. It follows from condition (2) of definition 3.2 that $y_t \in \tilde{\mu}_A$, for some $y \in G$ with $x \in a \cdot y$.

Thus $y_t \in \tilde{\mu}_A$, for some $y \in G$ with $x \in a \cdot y$. So, for all $x, a \in G$, there exist $y \in G$ such that $x \in a \cdot y$ and $\tilde{\mu}_A(x) \wedge \tilde{\mu}_A(a) = t \leq \tilde{\mu}_A(y)$.

(3) Let $x, y \in G$ and $\tilde{\lambda}_{A}(x) \vee \tilde{\lambda}_{A}(y) = s$. If s = 1, then $\tilde{\lambda}_{A}(z) \leq 1 = s$ for all $z \in x \cdot y$. It is easy to see that $\bigvee_{z \in x \cdot y} \tilde{\lambda}_{A}(z) \leq \tilde{\lambda}_{A}(x) \vee \tilde{\lambda}_{A}(y)$ for all $x, y \in G$.

If s < 1 there exists a $t \in (0, 1]$ such that $\tilde{\lambda}_A(x) \lor \tilde{\lambda}_A(y) = s < t$

Then $x_t, y_t \in \tilde{\lambda}_A$. By condition (3) of definition 3.2, we have $z_t \in \tilde{\lambda}_A$, $\forall z \in x \cdot y$ and so $\tilde{\lambda}_A(z) < t$. Consequently $\bigvee_{z \in x \cdot y} \tilde{\lambda}_A(z) \leq \tilde{\lambda}_A(x) \lor \tilde{\lambda}_A(y)$ for all $x, y \in G$.

(4) Now let $x, a \in G$ and $\tilde{\lambda}_A(x) \vee \tilde{\lambda}_A(a) = s$. If s < 1, there exists a $t \in (0, 1]$ such that $\tilde{\lambda}_A(x) \vee \tilde{\lambda}_A(a) = s < t$.

Then $x_t, a_t \in \tilde{\lambda}_A$. By condition (4) of definition 3.2, we have $y_t \in \tilde{\lambda}_A$ for some $y \in G$ with $x \in a \cdot y$ Hence $\tilde{\lambda}_A(y) < t$ and $\tilde{\lambda}_A(z) < t$.

Thus $\tilde{\lambda}_{A}(y) \lor \tilde{\lambda}_{A}(z) < t$. This implies that for all $x, a \in G$, there exist $y \in G$ such that $x \in a \cdot y$ and $\tilde{\lambda}_{A}(y) \le \tilde{\lambda}_{A}(x) \lor \tilde{\lambda}_{A}(a)$. If s = 1 the proof is obvious.

Theorem 3.5 If $A = \{\tilde{\mu}_A, \tilde{\lambda}_A\}$ is an interval valued intuitionistic $(\in, \in \lor q)$ and $(\in, \in \land q)$ -fuzzy H_v -subgroup of G, then $A = \{\tilde{\mu}_A, \tilde{\lambda}_A\}$ is an interval valued intuitionistic fuzzy H_v -subgroup of G.

Proof The proof is similar to the proof of Theorem 3.4.

Theorem 3.6 If $A = \{\tilde{\mu}_A, \tilde{\mu}_A^c\}$ is an interval valued intuitionistic (α, β) -fuzzy H_v -subgroup of G if and only if $A = \{\tilde{\mu}_A, \tilde{\mu}_A^c\}$ is an interval valued intuitionistic (α', β') -fuzzy H_v -subgroup of G, where $\alpha \in \{\in, q\}$ and $\beta \in \{\in, q, \in \lor q, \in \land q\}$. **Proof** We only prove the case of $(\alpha, \beta) = (\in, \in \lor q)$. The others are analogous. Let $A = \{\tilde{\mu}_A, \tilde{\mu}_A^c\}$ be an intuitionistic $(\in, \in \lor q)$ fuzzy H_v -subgroup of G.

(1) Let $x, y \in G$ and $t, r \in (0, 1]$ be such that $x_t, y_r q \tilde{\mu}_A$. It follows from Lemma 3.3 that $x_t, y_r \in \tilde{\mu}_A^c$. Since $\tilde{\mu}_A^c$ is an anti $(\in, \in \lor q)$ -fuzzy H_v -subgroup of G. Thus by condition (3) of definition 3.2, we have

 $z_{t \wedge r} \overline{\in \lor q} \tilde{\mu}_A^c$ for all $z \in x \cdot y$. By Lemma 3.3, this is equivalence with

 $z_{t\wedge r} \in \wedge q\tilde{\mu}_A$ for all $z \in x \cdot y$. Thus condition (1) of definition 3.2 is valid.

(2) Suppose that $x, a \in G$ and $t, r \in (0, 1]$ be such that $x_t, a_r q \tilde{\mu}_A$. By Lemma 3.3, we have $x_t, a_r q \tilde{\mu}_A$ iff $x_t, a_r \in \tilde{\mu}_A^c$. By hypotheses, $\tilde{\mu}_A^c$ is an anti $(\in, \in \lor q)$ -fuzzy H_v -subgroup of G. Thus by condition (4) of definition 3.2, we have

 $y_{t \wedge r} \in \lor q \tilde{\mu}_A^c$ for some $y \in G$ with $x \in a \cdot y$. It follows from Lemma 3.2 that

 $y_{t \wedge r} \in \wedge q \tilde{\mu}_A$ for some $y \in G$ with $x \in a \cdot y$. Thus condition (2) of definition 3.2 is valid.

(3) Let $x, y \in G$ and $t, r \in (0, 1]$ be such that $x_t, y_r \overline{q} \, \tilde{\mu}_A^c$. It follows from Lemma 3.3 that $x_t, y_r \overline{q} \, \tilde{\mu}_A^c$ iff $x_t, y_r \in \tilde{\mu}_A$. Since $A = \left\{ \tilde{\mu}_A, \tilde{\mu}_A^c \right\}$ is an intuitionistic $(\in, \in \lor q)$ -fuzzy H_v -subgroup of G. Thus by condition (1) of definition 3.2, we have $z_{t \wedge r} \in \lor q \tilde{\mu}_A$ for all $z \in x \cdot y$. By Lemma 3.2, this is equivalence with

 $z_{t \wedge r} \in \wedge q \tilde{\mu}_A^c$ for all $z \in x \cdot y$.

Thus condition (3) of definition 3.2 is valid.

(4) Suppose that $x, a \in G$ and $t, r \in (0, 1]$ be such that $x_t, a_r \overline{q} \tilde{\mu}_A^c$. This is equivalence with $x_t, a_r \in \tilde{\mu}_A$. By hypotheses, $\tilde{\mu}_A$ is an $(\in, \in \lor q)$ -fuzzy H_v -subgroup of G. Thus by condition (2) of definition 3.2, we have

 $y_{t \wedge r} \in \lor q \tilde{\mu}_A$ for some $y \in G$ with $x \in a \cdot y$. It follows from Lemma 3.3 that

 $y_{t \wedge r} \in \bigwedge q \tilde{\mu}_A^c$ for some $y \in G$ with $x \in a \cdot y$. Thus condition (4) of definition 3.2 is valid.

Theorem 3.7 If $\Diamond A = \{ \tilde{\lambda}_A^c, \tilde{\lambda}_A \}$ is an interval valued intuitionistic (α, β) -fuzzy H_v -subgroup of G if and only if $\Diamond A = \{ \tilde{\lambda}_A^c, \tilde{\lambda}_A \}$ is an interval valued intuitionistic (α', β') -fuzzy H_v -subgroup of G, where $\alpha \in \{ \in, q \}$ and $\beta \in \{ \in, q, \in \lor q, \in \land q \}$. **Proof** The proof is similar to the proof of Theorem 3.6.

Theorem 3.8 If $A = \{\tilde{\mu}_A, \tilde{\lambda}_A\}$ is an interval valued intuitionistic (α, β) -fuzzy H_v -subgroup of G if and only if $\tilde{\mu}_A$ is an (α, β) -fuzzy H_v -subgroup of G and $\tilde{\lambda}_A^c$ is an (α', β') -fuzzy H_v -subgroup of G, where $\alpha \in \{\in, q\}$ and $\beta \in \{\in, q, \in \lor q, \in \land q\}$. **Proof** We only prove the case of $(\alpha, \beta) = (\in, \in \lor q)$. The others are analogous. It is sufficient to show that, $\tilde{\lambda}_{A}^{c}$ is an $(q, \in \land q)$ -fuzzy H_{v} -subgroup of G if and only if $\tilde{\lambda}_{A}$ is an anti $(\in, \in \lor q)$ -fuzzy H_{v} -subgroup of G. This is true, because $x_{t}q\tilde{\lambda}_{A} \Leftrightarrow x_{t} \in \tilde{\lambda}_{A}^{c}$ and $x_{t} \in \land q\tilde{\lambda}_{A} \Leftrightarrow x_{t} \in \lor q \tilde{\lambda}_{A}^{c}$, $\forall x \in G$ and $t \in (0, 1]$.

REFERENCES

- F. Marty, Sur une generalization de la notion de group, in: 8th congress Math.Skandenaves, Stockholm, 1934, 45-49.
- [2] T. Vougiouklis, A new class of hyperstructures, J. Combin. Inf. System Sci.
- [3] B. Davvaz, A brief survey of the theory of H_{ν} -structures, in: Proceedings of the 8th International Congress on AHA, Greece 2002, Spanids Press, 2003, 39-70.
- [4] L. A. Zadeh, Fuzzy sets, Inform. And Control 8 (1965) 338-353.
- [5] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- [6] K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61, (1994) 137-142.
- [7] K. T. Atanassov, Intuitionistic fuzzy sets: Theory and Applications, Studies in fuzziness and soft computing, 35, Heidelberg, New York, Physica-Verl., 1999.
- [8] S. K. Bhakat, P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems, 51 (1992) 235-241.
- [9] S. K. Bhakat, P. Das, $(\in, \in \lor q)$ -fuzzy subgroups, Fuzzy Sets and Systems, 80 (1996) 359-368.
- [10] X. H. Yuan , H. X. Li and E. S. Lee, On the definition of the intuitionistic fuzzy subgroups, Computers and Mathematics with Applications, 59 (2010) 3117-3129.
- [11] B. Davvaz, W. A. Dudek, Y. B. Jun, Intuitionistic fuzzy H_{ν} -submodules, Inform. Sci. 176 (2006) 285-300.
- [12] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Florida, 1994.
- [13] B. Davvaz, Fuzzy H_{ν} -groups, Fuzzy Sets and Systems 101 (1999) 191-195.
- [14] P. M. Pu and Y. M. Liu, Fuzzy topology: Neighourhood structure of a fuzzy point and Moore-Smooth convergence, J. Math. Anal. Appl., 76 (1980) 571-599.
- [15] M. Asghari-Larimi, Intuitionistic (α , β)-Fuzzy H_v-Submodules, J. Math. Comput. Sci. 2 (2012), No. 1, 1-14.
- [16] A. K. Sinha and M. K. Dewangan, Intuitionistic (α, β) -Fuzzy H_v-Subgroups, International Journal

of Engineering Sciences & Research Technology, 3(2), (2014), 914-918.

[17] J. M. Zhan, B. Davvaz, K. P. Shum, A New View on Fuzzy Hypermodules, Acta Mathematica Sinica, English Series, 23(8), (2007), 1345-1356.